THE DEGREE AND CLASS OF MULTIPLY TRANSITIVE GROUPS, II*

W. A. MANNING

1. The paper to which this is a sequel had to do only with those multiply transitive groups of class $\mu(>3)$ in which at least one substitution of degree μ is of even order. \dagger Among other results, it was there proved that the degree n of triply transitive groups of class $\mu(>3)$, which contain a substitution of even order on μ letters, does not exceed 2μ . Triply transitive groups of class μ and degree 2μ exist. This measure of success was due to the simplicity of structure of diedral rotation groups of class μ generated by two similar substitutions of degree μ and order 2. Up to the present time no better limit than that of Bochert, $n \leq 3\mu(\mu>6)$, has been found to apply to these triply transitive groups of class $\mu(>3)$ in which all substitutions of degree μ are of odd order. \ddagger But it will here be proved that if such a group contains a substitution of order p^c (p an odd prime) on μ letters,

$$\mu > \frac{n}{2} \left(1 - \frac{1}{p^c} \right) - \frac{2}{p^c} \cdot$$

For doubly transitive groups the lower limit for the class $\mu(>3)$ in terms of the degree when there is a substitution of even order on μ letters present in the group is given by

$$\mu > \frac{n}{2} - \frac{n^{1/2}}{2} - 1.$$

Whenever applicable, this replaces Bochert's limit of $n/3 - 2n^{1/2}/3$. We can now prove that, when a doubly transitive group of class $\mu(>3)$ contains a substitution of odd prime order p, and (when p=3) n is sufficiently large,

$$\mu > \frac{n}{2} \left(1 - \frac{1}{p} \right) - \frac{n^{1/2}}{2} \left(1 - \frac{1}{p^2} \right)^{1/2} - 1.$$

^{*} Presented to the Society, triply and quadruply transitive groups, San Francisco Section, October 27, 1928; doubly transitive groups, December 31, 1928. Received by the editors in December, 1928.

[†] Manning, these Transactions, vol. 18 (1917), p. 463.

[‡] Bochert, Mathematische Annalen, vol. 40 (1892), p. 185.

[§] Manning, Bulletin of the American Mathematical Society, vol. 20 (1914), p. 468.

[¶] Bochert, Mathematische Annalen, vol. 49 (1897), p. 144.

For p=3, this is only $\mu > n/3 - (2n)^{1/2}/3 - 1$. It was stated by Bochert without proof that $n/3 - (2n)^{1/2}/3$ is a limit to which his ascending series of inferior limits for μ approaches on repeated use of his inequality (19). That is a mistake. His inequality is satisfied by $n/3 - (2n)^{1/2}/3$ and also by $n/3 - (2n)^{1/2}/3 - 1/2$ while a true inferior limit for μ is a number that does not satisfy the given inequality and which therefore is less than $n/3 - (2n)^{1/2} - 1/2$.

2. Bochert's Lemma will be used in the following form:

If the substitutions S and T have exactly m letters in common, and if S replaces q, and Tr, common letters by common letters, the degree of $S^{-1}T^{-1}ST$ is not greater than 3m-q-r.

This lemma remains indispensable in studying quadruply transitive groups of class $\mu(>3)$ and those doubly and triply transitive groups of class $\mu(>3)$ in which all the substitutions of degree μ are of order 3. But additional information is given in other cases by the following lemma:

LEMMA. If S and T are two substitutions of degree μ and odd order d which generate a group of class μ , and if no power of S is commutative with a power of T (identity excepted), S and T have at least $\mu/2-\mu/(2d)$ letters in common.

Let S and T have exactly m letters in common, m roman letters, say. Let the other letters of S and T be greek letters. From Bochert's Lemma it is known that $m \ge \lfloor \mu/3 \rfloor$, the integral part of $\mu/3$. Then no proof is needed when d=3. We assume that $d \ge 5$. Now we say that S has s_i cycles each of which contains i roman letters, and that T has t_i cycles each of which contains j romans. Then

$$s_0 + s_1 + \cdots + s_d = t_0 + t_1 + \cdots + t_d = \frac{\mu}{d}$$

the number of cycles in S and T. Also

$$s_1 + 2s_2 + 3s_3 + \cdots + ds_d = t_1 + 2t_2 + 3t_3 + \cdots + dt_d$$

= $\mu/3 - \epsilon + k_1 = \mu/3 + k$,

where $\epsilon = 0$, 1/3, or 2/3, as required to make $\mu/3 - \epsilon = [\mu/3]$, and k_1 is a positive integer or zero.

Consider a cycle of S in which there are i romans. It generates a regular cyclic group. Therefore in the d-1 powers of this cycle every sequence of two letters occurs once and only once; then in these d-1 powers of one cycle of S there are i(i-1) roman sequences. In the d-1 powers of S the number of roman sequences is exactly $2s_2+6s_3+\cdots+i(i-1)s_i+\cdots+d(d-1)s_d$, and the average number of roman sequences in the d-1 powers of S is $[2s_2+6s_3+\cdots+d(d-1)s_d]/(d-1)$. Similarly, in the powers of T the

average number of roman sequences is $[2t_2+6t_3+\cdots+d(d-1)t_d]/(d-1)$. From the powers of S and T let two substitutions S^u and T^v be chosen, each of which has the average or more than the average number of roman sequences. Since the number of roman letters is $\mu/3+k$, the total number of roman sequences in S^u and T^v jointly cannot exceed 3k. For Bochert's Lemma asserts that the degree of $S^{-u}T^{-v}S^uT^v$ is at most $\mu+3k$ diminished by the number of roman sequences in S^u and T^v . And since S^u and T^v are not commutative this degree is at least μ . Then

$$\sum_{i=0}^{d} \frac{i(i-1)s_i}{d-1} + \sum_{i=0}^{d} \frac{j(j-1)t_i}{d-1} \leq 3k,$$

and one of the two summation terms of this inequality is not greater than 3k/2, say the first. Thus we have simultaneously

$$s_0 + s_1 + s_2 + \dots + s_d = \frac{\mu}{d},$$

$$s_1 + 2s_2 + 3s_3 + \dots + ds_d = \frac{\mu}{3} + k,$$

$$2s_2 + 6s_3 + 12s_4 + \dots + d(d-1)s_d \le \frac{3}{2}(d-1)k.$$

Let two terms, s_x and s_y , be eliminated (x < y). The result is

$$\frac{(x+y-1)d-3xy}{3d}\mu+\sum_{i=0}^{d}(i-x)(i-y)s_{i}\leq \frac{1}{2}(3d-2x-2y-1)k.$$

If now x+1 be put for y,

$$\sum_{i=0}^{d}(i-x)(i-x-1)s_{i}\geq 0,$$

and therefore

$$\mu \le \frac{3d(3d - 4x - 3)}{2x(2d - 3x - 3)}k.$$

We may choose the integer x to make the coefficient of k a minimum. The continuous curve

$$y = \frac{3d(3d - 4x - 3)}{2x(2d - 3x - 3)}$$

has a minimum between x=0 and x=2d/3-1. From $D_xy=0$ we get x=0

 ${3d-3-[(d+1)(d+3)]^{1/2}}/4$, lying between (d-3)/2 and (d-1)/2, and to these two integers correspond equal ordinates, 6d/(d-3). Then

$$k \ge \frac{d-3}{6d}\mu,$$

and

$$m \geq \frac{d-1}{2d}\mu.$$

It follows that the degree of $\{S, T\}$ is at most $3\mu/2 + \mu/(2d)$.

3. We prove the following theorem:

Theorem I. The class $\mu(>3)$ of a triply transitive group of degree n that contains a substitution of degree μ and of order p^c (p an odd prime) is greater than

$$\frac{n}{2}\left(1-\frac{1}{p^c}\right)-\frac{2}{p^c}.$$

One of the substitutions of degree μ in the group G is $S = (a \cdots b \cdots) \cdots$, of order p^c . In case the exponent c is greater than unity, b is one of the letters in the same cycle of $S^{p^{c-1}}$ as a, and therefore in the same cycle as a in every power of S. There are in G substitutions similar to S which displace a and fix b. Let S_1, S_2, \cdots, S_w be a complete set of w such substitutions, conjugate under the transitive subgroup G(a)(b) of G that fixes a and b. No power of S_i ($i=1,2,\cdots,w$) is commutative with a power of S. The substitutions of this complete set of conjugates displace exactly

$$w+\frac{w(\mu-1)(\mu-2)}{n-2}$$

letters of S.* For they all displace a, and each of the other $w(\mu-1)$ letters in the set S_1, S_2, \dots, S_w occurs as often as any other, that is, $w(\mu-1)/(n-2)$ times. Thus the $\mu-2$ letters of S, disregarding a and b, occur in the set S_1, S_2, \dots the number of times stated above. Then, by our lemma,

$$w + \frac{w(\mu - 1)(\mu - 2)}{n - 2} \ge w \left(\frac{\mu}{2} - \frac{\mu}{2p^c}\right),$$

whence

$$\frac{n-\mu}{p^c}-(\mu-2)\left(\frac{n}{2}-\frac{n}{2p^c}-\mu\right)\geq 0.$$

^{*} For a detailed explanation of this and of similar formulas which follow, see Bochert, Mathematische Annalen, vol. 40 (1892), p. 176.

If now we put $n/2 - n/(2p^c) - \delta$ for μ in the left member of this inequality, we get

$$-\frac{n}{2}\left(\delta-\frac{\delta}{p^c}-\frac{1}{p^c}-\frac{1}{2p^{2c}}\right)+\delta^2+2\delta-\frac{\delta}{p^c}.$$

This is positive if $\delta = 1/p^c$, but if $\delta = 2/p^c$ it reduces to

$$-\frac{n}{2}\left(\frac{1}{p^{c}}-\frac{3}{p^{2c}}\right)+\frac{4}{p^{c}}+\frac{2}{p^{2c}},$$

negative if n is greater than $8+28/(p^c-3)$. It is known that there is no triply transitive group of class 5. Hence the theorem is true as stated without exception.

4. We prove the following theorem:

THEOREM II. The class $\mu(>3)$ of a triply transitive group of degree n in which every substitution of degree μ is of order 3 is not less than (n+4)/3.

Let $S=(abc)\cdots$, a substitution of degree μ of G. Let $S_1=(a\cdots)\cdots(b)$, similar to S. Under G(a)(b), S_1 is one of w conjugates, no one of which is commutative with S. If S and S_i have exactly $\mu/3$ common letters (their roman letters), S_i can have no roman sequence. This fact is an immediate consequence of Bochert's Lemma. In other words, if S_i has a roman sequence, it has at least $\mu/3+1$ letters in common with S. If S and S_i have $\mu/3+1$ letters in common, S, because it has only $\mu/3$ cycles, has some two letters of S_i in sequence. Hence, if S_i has a cycle of three roman letters, which means three roman sequences, S and S_i have $\mu/3+2$ or more common letters. Now in w/(n-2) substitutions of the set S_1, S_2, \cdots, S_w the letter a is followed by a given letter of G(a)(b). Then in $w(\mu-2)/(n-2)$ substitutions S_i , a is followed by a letter of S, and similarly a is preceded by a letter of S in $w(\mu-2)/(n-2)$ substitutions S_i . Therefore

$$w + \frac{w(\mu - 1)(\mu - 2)}{n - 2} \ge \frac{w\mu}{3} + 2 w \frac{\mu - 2}{n - 2}$$

This inequality reduces to

$$\frac{(\mu-2)(\mu-3)}{n-2} \ge \frac{\mu-3}{3},$$

whence, because by hypothesis $\mu > 3$,

$$n \leq 3\mu - 4$$
.

5. We prove the following theorem:

Theorem III. The degree of a quadruply transitive group of class μ (>3) does not exceed $2\mu+1$.

For quadruply transitive groups of class μ Bochert's limit is $2\mu+2$, while the limit found in the preceding paper under the restriction that one of the substitutions of degree μ is of even order is $2\mu-1$. In the following proof it is assumed that all the substitutions of degree μ in G are of odd order.

Two cases are to be distinguished: (1) At least one substitution of degree μ is of order >3. (2) All substitutions of degree μ are of order 3.

Case 1. Let $S = (a \cdot \cdot \cdot b \cdot \cdot \cdot) \cdot \cdot \cdot$ be a substitution of degree μ and of order > 3. The letters a and b are in the same cycle of S but are not adjacent. There are w substitutions $S_1 = (b) (a \cdot \cdot \cdot) \cdot \cdot \cdot$, $S_2, \cdot \cdot \cdot$, conjugate under G(a)(b), a doubly transitive subgroup of G. It was shown in §3 that the number of times the letters of S are to be found in the set S_1, S_2, \cdots is $w+w(\mu-1)(\mu-2)/(n-2)$. The number of times letters of S occur just before or just after a in the set S_1, S_2, \cdots is $2w(\mu-2)/(n-2)$. The number of sequences in S_1, S_2, \cdots is $w(\mu-2)$, if we exclude those of which one letter is a. Since G(a)(b) is doubly transitive each sequence occurs as often as any other and therefore exactly $w(\mu-2)/[(n-2)(n-3)]$ times. Now there are $(\mu-2)(\mu-3)$ permutations two at a time of the letters of S (excluding a and b). Therefore $2w(\mu-2)/(n-2)+w(\mu-2)^2(\mu-3)/[(n-2)(n-3)]$ is the number of sequences in S_1 , S_2 , \cdots of which both letters are letters of S. The number of times the letter before a (and the letter after a) in S occurs in the set S_1 , S_2 , \cdots is $2w(\mu-1)/(n-2)$. Excluding a and b, S has $\mu-4$ sequences. Excluding a, S_i has $(\mu-1)(\mu-2)$ permutations of letters two at a time, and therefore the set S_1, S_2, \cdots contains $w(\mu-1)(\mu-2)$ such permutations of $\mu-1$ letters two at a time, each occurring $w(\mu-1)(\mu-2)$ $[(n-2)(n-3)]^{-1}$ times, so that each sequence of S (not including a or b) is in $w(\mu-1)(\mu-2)/[(n-2)(n-3)]$ substitutions of the set S_1, S_2, \cdots . Therefore $2w(\mu-1)/(n-2)+w(\mu-1)(\mu-2)(\mu-4)/[(n-2)(n-3)]$ is the number of times permutations two at a time of letters of S_1, S_2, \cdots are a sequence Therefore the sum of the degrees of the w commutators $S^{-1}S_{i}^{-1}SS_{i}$ $(i=1, 2, \cdots, w)$ gives

$$3w + \frac{3w(\mu - 1)(\mu - 2)}{n - 2} - \frac{2w(\mu - 2)}{n - 2} - \frac{w(\mu - 2)^{2}(\mu - 3)}{(n - 2)(n - 3)} - \frac{2w(\mu - 1)}{n - 2} - \frac{w(\mu - 1)(\mu - 2)(\mu - 4)}{(n - 2)(n - 3)} \ge w\mu.$$

Whence, if z is put for $n-2\mu-3$,

$$(\mu-3)[z^2+(\mu+5)z]+2(\mu^2-10)\leq 0,$$

or

$$z^2 + (\mu + 5)z + 2\mu + 6 \le 0 \ (\mu > 5).$$

Therefore

$$n-2\mu-3 \le -2$$
, $n \le 2\mu+1$.

Case 2. The substitutions of degree μ are all of order 3. We have S=(abc) \cdots and the set of w conjugates under G(a)(b): $S_1=(b)(a\cdots)\cdots$, S_2, \cdots . Since G(a)(b) is doubly transitive we can choose the two letters in one of these substitutions, in S_1 say, at will from the n-2 letters of G(a)(b). If $S_1=(ac\alpha)(b)\cdots$, $S^{-1}S_1^{-1}SS_1=(c\alpha)(ab)\cdots$. If this substitution is of degree μ , $n \leq 2\mu-1$, and the theorem is true. Hence the degree of this commutator is not less than $\mu+1$. Also if $S_1=(a\alpha c)(b)\cdots$, $S^{-1}S_1^{-1}SS_1=(ac)(b\alpha)\cdots$, which must be of degree $\geq \mu+1$.

In the first cycle of each of the substitutions S_1, S_2, \cdots there occurs every possible sequence of the letters of G(a)(b), and any such sequence occurs w/[(n-2)(n-3)] times. Then the $2(n-\mu)$ sequences in which the letter c of S is followed or preceded by one of the $n-\mu$ letters of G fixed by S occur $2w(n-\mu)/[(n-2)(n-3)]$ times in the first cycle of the substitutions S_1, S_2, \cdots . Thus the commutator of S and $2w(n-\mu)/[(n-2)(n-3)]$ substitutions of the set S_1, S_2, \cdots is of degree $\geq \mu+1$.

In the set S_1, S_2, \dots, a is a letter of $2w(\mu-2)/(n-2)$ sequences in which the other letter is in S, and c occurs in $w(\mu-1)/(n-2)$ of the substitutions S_1, S_2, \dots . In the set S_1, S_2, \dots there are $w(\mu-2)^2(\mu-3)/[(n-2)(n-3)]$ sequences, not involving a, whose two letters are the $\mu-2$ letters c, d, \dots of S. There are $\mu-3$ sequences in S (not including a or b) and each such permutation of letters two at a time occurs in $S_1, S_2, \dots, w(\mu-1)(\mu-2) \cdot [(n-2)(n-3)]^{-1}$ times. Hence

$$3w + \frac{3w(\mu - 1)(\mu - 2)}{n - 2} - \frac{2w(\mu - 2)}{n - 2} - \frac{w(\mu - 1)}{n - 2} - \frac{w(\mu - 2)^{2}(\mu - 3)}{(n - 2)(n - 3)}$$
$$- \frac{w(\mu - 1)(\mu - 2)(\mu - 3)}{(n - 2)(n - 3)} \ge w\mu + \frac{2w(n - \mu)}{(n - 2)(n - 3)},$$

or, with $z=n-2\mu-3$,

$$z^2 + (\mu + 4)z + \mu + 4 \leq 0$$

and therefore

$$n \leq 2\mu + 1$$
.

6. We prove the following theorem:

THEOREM IV. Let μ be the class and n the degree of a doubly transitive group in which one of the substitutions of degree $\mu(>3)$ is of prime order p(>3); then

 $\mu > \frac{n}{2} \left(1 - \frac{1}{p} \right) - \frac{n^{1/2}}{2} \left(1 - \frac{1}{p^2} \right)^{1/2} - 1.$

There is a substitution $S = (ab \cdots) \cdots$ of prime order p (>3) in the given doubly transitive group G, and S is one of w conjugates under G. Any sequence of two letters, as ab, occurs $w\mu/[n(n-1)]$ times in this set. The number of possible sequences in n letters, in which one letter belongs to S and the other does not, is $2\mu(n-\mu)$. Then in the complete set of w conjugate substitutions such sequences as $a\alpha$ and αa occur in all $2w\mu^2(n-\mu) \cdot [n(n-1)]^{-1}$ times. There can be at most p-1 such sequences in a cycle. Let us say that S_1, S_2, \cdots, S_n are p substitutions of the set not commutative with p. Then

$$y \ge \frac{2w\mu(n-\mu)}{n(n-1)(1-1/p)}.$$

We recall that if one of the w conjugate substitutions has exactly x letters in common with S,

$$\sum_{w} x = \frac{w\mu^{2}}{n},$$

$$\sum_{w} x(x-1) = \frac{w\mu^{2}(\mu-1)^{2}}{n(n-1)},$$

and

$$\sum_{n} \left(x - \frac{\mu^2}{n} \right)^2 = \frac{w \mu^2 (n - \mu)^2}{n^2 (n - 1)}.$$

Now by our lemma, if S and S_i $(i=1, 2, \dots, y)$ have x_i letters in common,

$$x_i \ge \frac{\mu}{2} \left(1 - \frac{1}{\rho} \right),$$

and therefore

$$\sum_{i=1}^{y} x_i \geq \frac{y\mu}{2} \left(1 - \frac{1}{p}\right).$$

Let us now restrict our attention to those doubly transitive groups for which

$$\mu \leq \frac{n}{2} \left(1 - \frac{1}{p} \right).$$

For such groups

$$\frac{\mu}{2}\left(1-\frac{1}{p}\right)-\frac{\mu}{2}\frac{2\mu}{n}\geq 0,$$

and therefore

$$\sum_{i=1}^{y} \left(x_i - \frac{\mu^2}{n} \right)^2 \ge y \left(\frac{\mu}{2} - \frac{\mu}{2p} - \frac{\mu^2}{n} \right)^2.$$

Next,

$$\sum_{w-y} \left(x - \frac{\mu^2}{n} \right)^2 \le \frac{w \mu^2 (n - \mu)^2}{n^2 (n - 1)} - y \left(\frac{\mu}{2} - \frac{\mu}{2p} - \frac{\mu^2}{n} \right)^2.$$

Also

$$\sum_{w-y} \left(x - \frac{\mu^2}{n} \right)^2 \ge \frac{1}{w - y} \left[\sum_{w-y} \left(x - \frac{\mu^2}{n} \right) \right]^2$$

$$\ge \frac{1}{w - y} \left(\frac{y\mu}{2} - \frac{y\mu}{2p} - \frac{y\mu^2}{n} \right)^2,$$

so that

$$\frac{w\mu^{2}(n-\mu)^{2}}{n^{2}(n-1)}-y\left(\frac{\mu}{2}-\frac{\mu}{2p}-\frac{\mu^{2}}{n}\right)^{2}\geq \frac{y^{2}}{w-y}\left(\frac{\mu}{2}-\frac{\mu}{2p}-\frac{\mu^{2}}{n}\right)^{2},$$

or

$$\frac{w\mu^2(n-\mu)^2}{n^2(n-1)} - \frac{wy}{w-v} \left(\frac{\mu}{2} - \frac{\mu}{2p} - \frac{\mu^2}{n}\right)^2 \ge 0,$$

or

$$\left(\frac{w}{v}-1\right)\frac{\mu^2(n-\mu)^2}{n^2(n-1)}-\left(\frac{\mu}{2}-\frac{\mu}{2p}-\frac{\mu^2}{n}\right)^2\geq 0.$$

Substituting for w/y,

$$\frac{\mu(n-\mu)(1-1/p)}{2n}-\frac{\mu^2(n-\mu)^2}{n^2(n-1)}-\frac{\mu^2}{n^2}\left(\frac{n}{2}-\frac{n}{2n}-\mu\right)^2\geq 0,$$

or finally,

$$\frac{n(n-\mu)(1-1/p)}{2\mu}-\frac{(n-\mu)^2}{n-1}-\left(\frac{n}{2}-\frac{n}{2p}-\mu\right)^2\geq 0.$$

Let $n/2 - n/(2p) - \epsilon n^{1/2}/2 - \delta$ be substituted for μ in the final inequality. In the resulting polynomial in $n^{1/2}$ it will be seen that the coefficient of n^3 vanishes if $\epsilon = (1 - 1/p^2)^{1/2}$. With this value of ϵ agreed upon, the polynomial may be written

$$\left(2 + \frac{2}{p^2} - 4\delta + \frac{4\delta}{p}\right) \epsilon n^{5/2} + \left(\frac{2\epsilon^2}{p} + 8\delta - 4\delta^2 + \frac{4\delta^2}{p}\right) n^2 \\
+ \left(8\delta + \frac{8\delta}{p} + 12\delta^2 - 2 + \frac{2}{p}\right) \epsilon n^{3/2} + \left(8\delta^2 + 8\delta + \frac{8\delta}{p} - 4 + \frac{4}{p}\right) \delta n.$$

If $\delta = \frac{1}{2}$, this polynomial is positive; if $\delta = 1$, it reduces to

$$-\left(1-\frac{2}{p}-\frac{1}{p^2}\right)\epsilon n^{3/2}+\left(2+\frac{3}{p}-\frac{1}{p^3}\right)n+\left(9+\frac{5}{p}\right)\epsilon n^{1/2}+6+\frac{6}{p},$$

which is negative for n > 57. Any possible cases of exception are covered by the known theorems on non-alternating primitive groups which contain substitutions of order p and degree qp (q=1, 2, 3, 4).*

7. The above proof is valid for p=3 until we come to the discussion of the polynomial

$$-n^{3/2}+10\cdot 2^{1/2}n+48n^{1/2}+27\cdot 2^{1/2}$$

which is negative when n > 292. If however we put $\delta = 4/3$, the polynomial is

$$-3n^{3/2}+11\cdot 2^{1/2}n+77n^{1/2}+58\cdot 2^{1/2}$$
.

and this is negative if n > 73. If n = 73, 70, 69, 60, 59, $[n - (2n)^{1/2} - 4]/3 = 18.9$, 18.1, 17.8, 15.0, 14.7, respectively. It can be shown that this limit holds for $n \le 73$. It is known to be true for doubly transitive groups of class 6, 9, and 12†. For groups of class 15 or 18, we can use the following theorem:

A primitive group that contains a substitution of order p and degree pq (p an odd prime, p < q < 2p + 3), contains a transitive subgroup the degree of which is not greater than the larger of the two numbers $pq + q^2 - q$ and $2q^2 - p^2$.

Thus our doubly transitive group of class 18 contains a transitive subgroup H of degree ≤ 63 , and we know from the proof of the theorem cited that the latter is generated by substitutions of order 3 and degree 18. We are concerned only with n=70, 71, 72, 73. Then G is more than doubly transitive unless the transitive subgroup H is imprimitive. Since H is generated by similar substitutions of order 3 and degree 18, its systems of imprimitivity are of two, three, or six letters. If H has systems of imprimitivity of six letters each, its degree is not greater than 60, and G has a doubly transitive subgroup H' of degree ≤ 67 ; and if the systems are of two or three letters only, the same is true. § Thus G is more than doubly transitive and we should have (by §4) $\mu > n/3$.

If G is of class 15, H is of degree ≤ 41 , and the doubly transitive subgroup H' is of degree ≤ 46 .

^{*} Manning, these Transactions, vol. 10 (1909), p. 247.

[†] Manning, these Transactions, vol. 6 (1905), p. 45; American Journal of Mathematics, vol. 35 (1913) p. 229

[#] Manning, these Transactions, vol. 12 (1911), p. 382, §12.

[§] Manning, these Transactions, vol. 7 (1906), p. 499; Primitive Groups, part 1, 1921, p. 93.

Our result for p=3 leaves much to be desired but is at any rate of the same form as Theorem IV:

THEOREM V. Let μ be the class and n (>292) the degree of a doubly transitive group in which one of the substitutions of degree μ (>3) is of order 3; then

$$\mu > \frac{n}{3} - \frac{(2n)^{1/2}}{3} - 1.$$
If $n \le 292$,
$$\mu > \frac{n}{3} - \frac{(2n)^{1/2}}{3} - \frac{4}{3}.$$

STANFORD UNIVERSITY, PALO ALTO, CALIF.